第 7 章: Hindley-Milner 类型签名

Hindley-Milner 类型签名

初识类型

刚接触函数式编程的人很容易深陷类型签名(type signatures)的泥淖。类型(type)是让所有不同背景的人都能高效沟通的元语言。很大程度上,类型签名是以 “Hindley-Milner” 系统写就的,本章我们将一起探究下这个系统。
类型签名在写纯函数时所起的作用非常大,大到英语都不能望其项背。这些签名轻轻诉说着函数最不可告人的秘密。短短一行,就能暴露函数的行为和目的。类型签名还衍生出了 “自由定理(free theorems)” 的概念。因为类型是可以推断的,所以明确的类型签名并不是必要的;不过你完全可以写精确度很高的类型签名,也可以让它们保持通用、抽象。类型签名不但可以用于编译时检测(compile time checks),还是最好的文档。所以类型签名在函数式编程中扮演着非常重要的角色——重要程度远远超出你的想象。
JavaScript 是一种动态类型语言,但这并不意味着要一味否定类型。我们还是要和字符串、数值、布尔值等等类型打交道的;只不过,语言层面上没有相关的集成让我们时刻谨记各种数据的类型罢了。别担心,既然我们可以用类型签名生成文档,也可以用注释来达到区分类型的目的。
JavaScript 也有一些类型检查工具,比如 Flow,或者它的静态类型方言 TypeScript 。由于本书的目标是让读者能够熟练使用各种工具去书写函数式代码,所以我们将选择所有函数式语言都遵循的标准类型系统。

神秘的传奇故事

从积尘已久的数学书,到浩如烟海的学术论文;从每周必读的博客文章,到源代码本身,我们都能发现 Hindley-Milner 类型签名的身影。Hindley-Milner 并不是一个复杂的系统,但还是需要一些解释和练习才能完全掌握这个小型语言的要义。
// capitalize :: String -> String
var capitalize = function(s){
return toUpperCase(head(s)) + toLowerCase(tail(s));
}
capitalize("smurf");
//=> "Smurf"
这里,capitalize 接受一个 String 并返回了一个 String。先别管实现,我们感兴趣的是它的类型签名。
在 Hindley-Milner 系统中,函数都写成类似 a -> b 这个样子,其中 ab 是任意类型的变量。因此,capitalize 函数的类型签名可以理解为“一个接受 String 返回 String 的函数”。换句话说,它接受一个 String 类型作为输入,并返回一个 String 类型的输出。
再来看一些函数签名:
// strLength :: String -> Number
var strLength = function(s){
return s.length;
}
// join :: String -> [String] -> String
var join = curry(function(what, xs){
return xs.join(what);
});
// match :: Regex -> String -> [String]
var match = curry(function(reg, s){
return s.match(reg);
});
// replace :: Regex -> String -> String -> String
var replace = curry(function(reg, sub, s){
return s.replace(reg, sub);
});
strLengthcapitalize 类似:接受一个 String 然后返回一个 Number
至于其他的,第一眼看起来可能会比较疑惑。不过在还不完全了解细节的情况下,你尽可以把最后一个类型视作返回值。那么 match 函数就可以这么理解:它接受一个 Regex 和一个 String,返回一个 [String]。但是,这里有一个非常有趣的地方,请允许我稍作解释。
对于 match 函数,我们完全可以把它的类型签名这样分组:
// match :: Regex -> (String -> [String])
var match = curry(function(reg, s){
return s.match(reg);
});
是的,把最后两个类型包在括号里就能反映更多的信息了。现在我们可以看出 match 这个函数接受一个 Regex 作为参数,返回一个从 String[String] 的函数。因为 curry,造成的结果就是这样:给 match 函数一个 Regex,得到一个新函数,能够处理其 String 参数。当然了,我们并非一定要这么看待这个过程,但这样思考有助于理解为何最后一个类型是返回值。
// match :: Regex -> (String -> [String])
// onHoliday :: String -> [String]
var onHoliday = match(/holiday/ig);
每传一个参数,就会弹出类型签名最前面的那个类型。所以 onHoliday 就是已经有了 Regex 参数的 match
// replace :: Regex -> (String -> (String -> String))
var replace = curry(function(reg, sub, s){
return s.replace(reg, sub);
});
但是在这段代码中,就像你看到的那样,为 replace 加上这么多括号未免有些多余。所以这里的括号是完全可以省略的,如果我们愿意,可以一次性把所有的参数都传进来;所以,一种更简单的思路是:replace 接受三个参数,分别是 RegexString 和另一个 String,返回的还是一个 String
最后几点:
// id :: a -> a
var id = function(x){ return x; }
// map :: (a -> b) -> [a] -> [b]
var map = curry(function(f, xs){
return xs.map(f);
});
这里的 id 函数接受任意类型的 a 并返回同一个类型的数据。和普通代码一样,我们也可以在类型签名中使用变量。把变量命名为 ab 只是一种约定俗成的习惯,你可以使用任何你喜欢的名称。对于相同的变量名,其类型也一定相同。这是非常重要的一个原则,所以我们必须重申:a -> b 可以是从任意类型的 a 到任意类型的 b,但是 a -> a 必须是同一个类型。例如,id 可以是 String -> String,也可以是 Number -> Number,但不能是 String -> Bool
相似地,map 也使用了变量,只不过这里的 b 可能与 a 类型相同,也可能不相同。我们可以这么理解:map 接受两个参数,第一个是从任意类型 a 到任意类型 b 的函数;第二个是一个数组,元素是任意类型的 amap 最后返回的是一个类型 b 的数组。
类型签名的美妙令人印象深刻,希望你已经被它深深折服。类型签名简直能够一字一句地告诉我们函数做了什么事情。比如 map 函数就是这样:给定一个从 ab 的函数和一个 a 类型的数组作为参数,它就能返回一个 b 类型的数组。map 唯一的明智之举就是使用其函数参数调用每一个 a,其他所有操作都是噱头。
辨别类型和它们的含义是一项重要的技能,这项技能可以让你在函数式编程的路上走得更远。不仅论文、博客和文档等更易理解,类型签名本身也基本上能够告诉你它的函数性(functionality)。要成为一个能够熟练读懂类型签名的人,你得勤于练习;不过一旦掌握了这项技能,你将会受益无穷,不读手册也能获取大量信息。
这里还有一些例子,你可以自己试试看能不能理解它们。
// head :: [a] -> a
var head = function(xs){ return xs[0]; }
// filter :: (a -> Bool) -> [a] -> [a]
var filter = curry(function(f, xs){
return xs.filter(f);
});
// reduce :: (b -> a -> b) -> b -> [a] -> b
var reduce = curry(function(f, x, xs){
return xs.reduce(f, x);
});
reduce 可能是以上签名里让人印象最为深刻的一个,同时也是最复杂的一个了,所以如果你理解起来有困难的话,也不必气馁。为了满足你的好奇心,我还是试着解释一下吧;尽管我的解释远远不如你自己通过类型签名理解其含义来得有教益。
不保证解释完全正确...(译者注:此处原文是“here goes nothing”,一般用于人们在做没有把握的事情之前说的话。)注意看 reduce 的签名,可以看到它的第一个参数是个函数,这个函数接受一个 b 和一个 a 并返回一个 b。那么这些 ab 是从哪来的呢?很简单,签名中的第二个和第三个参数就是 b 和元素为 a 的数组,所以唯一合理的假设就是这里的 b 和每一个 a 都将传给前面说的函数作为参数。我们还可以看到,reduce 函数最后返回的结果是一个 b,也就是说,reduce 的第一个参数函数的输出就是 reduce 函数的输出。知道了 reduce 的含义,我们才敢说上面关于类型签名的推理是正确的。

缩小可能性范围

一旦引入一个类型变量,就会出现一个奇怪的特性叫做 parametricity(http://en.wikipedia.org/wiki/Parametricity )。这个特性表明,函数将会以一种统一的行为作用于所有的类型。我们来研究下:
// head :: [a] -> a
注意看 head,可以看到它接受 [a] 返回 a。我们除了知道参数是个数组,其他的一概不知;所以函数的功能就只限于操作这个数组上。在它对 a 一无所知的情况下,它可能对 a 做什么操作呢?换句话说,a 告诉我们它不是一个特定的类型,这意味着它可以是任意类型;那么我们的函数对每一个可能的类型的操作都必须保持统一。这就是 parametricity 的含义。要让我们来猜测 head 的实现的话,唯一合理的推断就是它返回数组的第一个,或者最后一个,或者某个随机的元素;当然,head 这个命名应该能给我们一些线索。
再看一个例子:
// reverse :: [a] -> [a]
仅从类型签名来看,reverse 可能的目的是什么?再次强调,它不能对 a 做任何特定的事情。它不能把 a 变成另一个类型,或者引入一个 b;这都是不可能的。那它可以排序么?答案是不能,没有足够的信息让它去为每一个可能的类型排序。它能重新排列么?可以的,我觉得它可以,但它必须以一种可预料的方式达成目标。另外,它也有可能删除或者重复某一个元素。重点是,不管在哪种情况下,类型 a 的多态性(polymorphism)都会大幅缩小 reverse 函数可能的行为的范围。
这种“可能性范围的缩小”(narrowing of possibility)允许我们利用类似 Hoogle 这样的类型签名搜索引擎去搜索我们想要的函数。类型签名所能包含的信息量真的非常大。

自由定理

类型签名除了能够帮助我们推断函数可能的实现,还能够给我们带来自由定理(free theorems)。下面是两个直接从 Wadler 关于此主题的论文 中随机选择的例子:
// head :: [a] -> a
compose(f, head) == compose(head, map(f));
// filter :: (a -> Bool) -> [a] -> [a]
compose(map(f), filter(compose(p, f))) == compose(filter(p), map(f));
不用写一行代码你也能理解这些定理,它们直接来自于类型本身。第一个例子中,等式左边说的是,先获取数组的头部(译者注:即第一个元素),然后对它调用函数 f;等式右边说的是,先对数组中的每一个元素调用 f,然后再取其返回结果的头部。这两个表达式的作用是相等的,但是前者要快得多。
你可能会想,这不是常识么。但根据我的调查,计算机是没有常识的。实际上,计算机必须要有一种形式化方法来自动进行类似的代码优化。数学提供了这种方法,能够形式化直观的感觉,这无疑对死板的计算机逻辑非常有用。
第二个例子 filter 也是一样。等式左边是说,先组合 fp 检查哪些元素要过滤掉,然后再通过 map 实际调用 f(别忘了 filter 是不会改变数组中元素的,这就保证了 a 将保持不变);等式右边是说,先用 map 调用 f,然后再根据 p 过滤元素。这两者也是相等的。
以上只是两个例子,但它们传达的定理却是普适的,可以应用到所有的多态性类型签名上。在 JavaScript 中,你可以借助一些工具来声明重写规则,也可以直接使用 compose 函数来定义重写规则。总之,这么做的好处是显而易见且唾手可得的,可能性则是无限的。

类型约束

最后要注意的一点是,签名也可以把类型约束为一个特定的接口(interface)。
// sort :: Ord a => [a] -> [a]
胖箭头左边表明的是这样一个事实:a 一定是个 Ord 对象。也就是说,a 必须要实现 Ord 接口。Ord 到底是什么?它是从哪来的?在一门强类型语言中,它可能就是一个自定义的接口,能够让不同的值排序。通过这种方式,我们不仅能够获取关于 a 的更多信息,了解 sort 函数具体要干什么,而且还能限制函数的作用范围。我们把这种接口声明叫做类型约束(type constraints)。
// assertEqual :: (Eq a, Show a) => a -> a -> Assertion
这个例子中有两个约束:EqShow。它们保证了我们可以检查不同的 a 是否相等,并在有不相等的情况下打印出其中的差异。
我们将会在后面的章节中看到更多类型约束的例子,其含义也会更加清晰。

总结

Hindley-Milner 类型签名在函数式编程中无处不在,它们简单易读,写起来也不复杂。但仅仅凭签名就能理解整个程序还是有一定难度的,要想精通这个技能就更需要花点时间了。从这开始,我们将给每一行代码都加上类型签名。
Copy link
On this page
Hindley-Milner 类型签名
初识类型
神秘的传奇故事
缩小可能性范围
自由定理
类型约束
总结